

ONEJOON PRODUCT DEVELOPMENT HIGH PERFORMANCE FURNACE SOLUTIONS

Model-based process optimization for high-performance operations

Sophisticated furnace solutions by computational fluid dynamics

ONEJOON Product Development

High Performance Furnace Solutions

How do I achieve the optimal operating status of my thermal process? Does my innovative idea work in a production furnace?

Over the years, computer-based calculation methods have become increasingly important. ONEJOON integrates the latest methods of flow simulation into comprehensive technical and practical company know-how. This results in a very efficient and realistic planning process and an optimal furnace design.

Based on our in-depth expertise in the field of CFD flow simulation, we deliver customized furnace solutions for your challenges. Let us exploit the full potential of your process!

Service portfolio

- Detailed prediction of flow fields in industrial furnaces or piping systems / fittings
- Validated pressure loss calculations in the overall system
- Fluid mechanical and thermal evaluation of innovative process ideas or existing systems
- Targeted optimization of the product inflow for the best possible transfer of heat
- Precise, local detection of flow or temperature-critical furnace areas
- Realistic modelling of chemical reactions in the furnace chamber

Expertise

- > 40 years of know-how in industrial furnace construction
- Consistent integration of long-standing ONEJOON experts with practical experience
- Constant further development of models through comparison of the CFD results in the company's own technical centre with the latest measurement technology.
- Validation of the simulation results by practical measurements in the field
- Outstanding references of successful performance enhancements on the basis of the CFD simulations performed => see References

Advantages

Increase in efficiency:

- Optimization of media consumption
- Avoidance of costly and complex preliminary tests
- Fast and reliable design specification for new developments
- Fast problem analysis and specific solution finding
- Consistent product quality
- Maximization of product throughput

Better process understanding:

- Higher plant availability
- Higher degree of process control
- Improvement of product quality

ONEJOON Product Development

High Performance Furnace Solutions

How is a new product created?

$$\rho \frac{\partial v}{\partial t} + \rho u \frac{\partial v}{\partial x} + \rho v \frac{\partial v}{\partial y} + \rho w \frac{\partial v}{\partial z} = -\frac{\partial p}{\partial y} + \frac{\partial}{\partial x} \left[\mu \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right) \right] + \frac{\partial}{\partial y} \left(\lambda \nabla \circ \mathsf{V} + 2\mu \frac{\partial v}{\partial y} \right) + \frac{\partial}{\partial z} \left[\mu \left(\frac{\partial w}{\partial y} + \frac{\partial v}{\partial z} \right) \right]$$

▲ 3D-Navier-Stokes equation

$$\rho \frac{\partial k}{\partial t} + \rho u \frac{\partial k}{\partial x} + \rho v \frac{\partial k}{\partial y} + \rho w \frac{\partial k}{\partial z} = \frac{\partial}{\partial x} \left[\frac{\mu_t}{\sigma_k} \frac{\partial k}{\partial x} \right] + \frac{\partial}{\partial y} \left[\frac{\mu_t}{\sigma_k} \frac{\partial k}{\partial y} \right] + \frac{\partial}{\partial z} \left[\frac{\mu_t}{\sigma_k} \frac{\partial k}{\partial z} \right] - \rho \varepsilon + \mu_t \left[2 \left(\frac{\partial u}{\partial x} \right)^2 + 2 \left(\frac{\partial v}{\partial y} \right)^2 + 2 \left(\frac{\partial w}{\partial z} \right)^2 + \left(\frac{\partial u}{\partial z} + \frac{\partial v}{\partial x} \right)^2 + \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} \right)^2 + \left(\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} \right)^2 \right]$$

▲ k-ε turbulence model

How can I optimize my existing product?

Are you interested in a CFD flow simulation? Our team will be happy to advise you on all matters relating to this topic.

Contact person: Daniel Hipp Phone: +49 70 31 78 21 31 E-mail: simulation@onejoon.de

Results and references

 $Rough\ cooling-Identification\ of\ stalls\ above\ the\ product\ and\ constructional\ adjustment\ of\ the\ flow\ channel$

 ${\it Removal of reaction gases-dimensioning of the sparger for optimum product overflow}$

ONEJOON GmbH Leinetal, 37120 Bovenden, Germany Phone: +49 551 820 830-0, Fax: +49 551 820 830-50

www.onejoon.de

2020 © ONEJOON GmbH | 04-2020 | 01